ПAmIBIA UחIVERSITY
 OF SCIEחCE AחD TECHחOLOGY

FACULTY OF HEALTH, NATURAL RESOURCES AND APPLIED SCIENCES

SCHOOL OF NATURAL AND APPLIED SCIENCES

DEPARTMENT OF BIOLOGY, CHEMISTRY AND PHYSICS

QUALIFICATION : BACHELOR OF SCIENCE	
QUALIFICATION CODE: 07BOSC	LEVEL: 7
COURSE CODE: MMP701S	COURSE NAME: MATHEMATICAL METHODS IN PHYSICS
SESSION: JULY 2023	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	Prof Dipti Ranjan Sahu
MODERATOR:	Prof. S. C. Ray

INSTRUCTIONS

1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.

PERMISSIBLE MATERIALS

Non-programmable Calculators

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)
1.1 The law of decay states that the rate of decay for a radioactive material is proportional to the number of atoms present.
1.1.1 Formulate the differential equation and determine the amount of radioactive material left at any time, t by solving the differential equation.
1.1.2 Determine the half-life of a radioactive material using solution of differential equation.
1.1.3 In two years, 3 g of a radioisotope decay to 0.9 g . Determine both the half-life T and the decay rate k .
1.2 Solve the equation,

$$
\begin{equation*}
\frac{d x}{d t}+t^{2} x=\operatorname{Cos} t \tag{5}
\end{equation*}
$$

1.3 Solve the differential equation $\left(2 x y-3 x^{2}\right) d x+\left(x^{2}-2 y\right) d y=0$

Question 2

2.1 Suppose that a car is going $76 \mathrm{~m} / \mathrm{s}$ when brakes are applied at $\mathrm{t}=2 \mathrm{~s}$. Suppose that the nonconstant deceleration is known to be $a=-12 t^{2}$. Formulate the differential equation and determine the distance the car travels.
2.2 Find the particular solution of $x^{\prime}+x=e^{-t}$
2.3 Solve the equation: $5 y^{\prime \prime}+2 y^{\prime}+2 y=0$.

Question 3
3.1 Find the eigenvalues and eigenvector of the matrix A given by

$$
A=\left[\begin{array}{ccc}
1 & -1 & 0 \tag{10}\\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right]
$$

3.2 Solve the following system of equations using Gauss-Jordan Elimination:

$$
\begin{aligned}
& -3 x-2 y+4 z=9 \\
& 3 y-2 z=5 \\
& 4 x-3 y+2 z=7
\end{aligned}
$$

3.3 If $\left[\begin{array}{ll}2 x & 3\end{array}\right]\left[\begin{array}{cc}1 & 2 \\ 0 & -3\end{array}\right]\left[\begin{array}{l}x \\ 8\end{array}\right]=0$, find the value of x

Question 4

4.1 Let v be a vector in an inner product space V over R.

Suppose that $\left\{u_{1}, \ldots, u_{n}\right\}\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis of V.
Let θ_{i} be the angle between v and u_{i} for $i=1, \ldots, n$.. Prove that $\cos ^{2} \theta_{1}+\cdots+\cos ^{2} \theta_{n}=1$
4.2 Verify if the vectors $V_{1}=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) ; V_{2}=\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right) ; V_{3}=\left(\begin{array}{l}0 \\ 3 \\ 5\end{array}\right)$ are linearly independent.
4.3 Express first two Legendre Polynomials $P_{0}(x)$ and $P_{1}(x)$ using the given function

$$
\begin{equation*}
P_{n}(x)=\frac{(2 n)!}{2^{\prime \prime}(n!)^{2}}\left[x^{\prime \prime}-\frac{n(n-1)}{2(2 n-1)} x^{n-2}+\frac{n(n-1)(n-2)(n-3)}{2 \times 4(2 n-1)(2 n-3)} x^{n-4}-\ldots\right] \tag{4}
\end{equation*}
$$

4.4 Using the Laplace transform find the solution for the following equation

$$
\frac{\partial y(t)}{\partial t}=\mathrm{e}^{-3 t}
$$

with initial conditions $y(0)=4$ and $D y(0)=0$

